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Abstract 
True natural harmony, popularized by sixth 
century BC Greek philosopher Pythagoras, 
required simultaneously sounded frequency to 
have ratios equal to the ratios of small whole 
numbers.  The tempered scale of western music, 
on the other hand, requires all semitone 
frequencies to have a ratio of  the awkward 
number, 12 2 .  The number 12  and, except for 
the octave,  all western music intervals, can’t be 
exactly expressed as the ratio of small numbers.  
Indeed, the frequency ratios can’t be exactly 
expressed as the ratio of any whole numbers.  
They are irrational.  Nevertheless, the tempered 
scale can be used to generate natural 
Pythagorean ratios to an accuracy often audibly 
indistinguishable to a trained listener.  The 
tempered scale, in addition, allows freedom of 
key changes (modulation) in musical works 
difficult to instrumentally achieve in the 
Pythagorean system of harmony.  The 
geometrically spaced frequency intervals of the 
tempered scale also make perfect use of the 
logarithmic frequency perception of the human 
ear.  The ability of the tempered scale to generate 
near perfect Pythagorean harmonies can be 
demonstrated in a number of ways.  A deeper 
question asks why this remarkable relationship 
exists.  There is, remarkably, no fundamental 
mathematical or physical truth explaining the 
observed properties. The philosophical answer, 
we propose, is either a wonderful cosmic 
coincidence - or the clever design of a Creator 
desiring our appreciation of both the intricate and 
beautiful harmonies of western music and the 
flexibility to richly manipulate them in almost 
innumerable ways.  

2

Introduction 
Newtonian physics applied to the vibrating 
strings of violins, violas and guitars; and the 
vibrating air columns of bugles, clarinets, 
trombones and pipe organs, show that available 
tones of a string or an air column of fixed length 
are related by integer multiples (harmonics) of a 
fundamental frequency.  Tonal color is largely 
crafted by choice of the  strength of  the 
components of the harmonics in a tone.   

The physics of vibrating strings and air 
columns can be used to generate a partial 
differential equation dubbed the wave equation.  
When subjected to boundary conditions (e.g. a 
string is constrained not to move at the bridge 
boundary of a guitar), the wave equation gives 
rise to a harmonic or Fourier series solution of 
the wave equation corresponding to integer 
multiples of the lowest frequency allowed by the 
boundary constraints.1  

The Mth harmonic of a reference tone, 
or root, is simply M+1 times the frequency of the 
reference frequency and can be expressed as the 
ratio 1:M+1.  For a vibrating string or air 
column, the root can be taken as the lowest 
frequency allowed by the physics of the imposed 
boundary constraints.  Simultaneous sounding of 
notes corresponding to the root and its first five 
harmonics constitute a natural major chord.  
Clearly, then, notes with frequency ratios of 
1:M+1 form pleasing harmony when M is small.  

More generally, Pythagorean harmony 
claims  two audio tones will harmonize when the 
ratio of their frequencies are equal to a ratio of 
small whole numbers (i.e. positive integers).  
This follows directly from the pleasing harmony 
                                                           
1 Mathematical details of the derivation of the 
wave equation for a vibrating string and its 
harmonic (or Fourier series) solution is in 
Appendix A. 
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of harmonics.  For example, the second harmonic 
(1:3) and the third (1:4) harmonic harmonize.  
These two notes have a relative ratio2 of 3:4 and, 
indeed,  form a the interval of a natural perfect 
fourth.  This pleasing musical interval is, as 
required by Pythagoras, the ratio of two small 
whole numbers. 

Western music, on the other hand, is not 
based on the ratio of small whole numbers.  It is, 
rather, built around twelfth root of two = 

...05946.122 12
1

12 == .  The number 12 comes 
from the division of octave into 12 equally 
spaced chromatic steps.  By definition, 12 , 
when multiplied by itself 12 times, is equal to 
two.

2

3   The ratio of the frequency of any two 
adjacent semitones4, such as C# to C, is 12 .  
Since a perfect fourth is five semitones, the ratio 

of frequencies is 

2

( )512 2 .  This seems a far cry 
from the Pythagorean frequency ratio of 3:4.  
When, however, the numbers are evaluated, we 
find  

 

( ) 33484.1233333.1
3
4 512 =≈= .       (1) 

 
The difference between these notes is a 
miniscule audibly indistinguishable5 1.955% of a 
semitone, or 1.955 cents.6   
 The near numerical equivalence in 
Equation (1) illustrates an more general 
awesome property of the tempered scale of 
western music.  Using the awkward number, 
12 2 , frequencies can be generated whose ratios 
are nearly identical to ratios of whole numbers.  
The tempered scale also offers important 

advantages in comparison to a strict Pythagorean 
scale.   

                                                           
2 Equal to the ratio of one fifth to one fourth. 
3 Another illustration is compound interest.  A 
one time investment made at an annual rate of 
interest of 12 - 1 = 5.946… % annual interest 
will double in 12 years. 

2

4 A piano tuner will tell you, as is the case with 
most quantifiable human characteristics, the ratio 
is not exact.  Lower notes on a piano, for 
example, are tuned a bit lower than dictated by 
the 12  ratio. 2
5 The method to compute the semitones or cents 
between two frequencies is discussed in 
Appendix B. 
6 A semitone is divided into 100 cents. 

 
� Modulation.  The tempered scale allows 

modulation among different musical keys.  
The tonic or reference note can be changed 
since, in the tempered scale, no note is 
favored above another.  Using the tempered 
scale, for example, one can change melody 
and harmony from the key of C to the key of 
G using the same set of notes.  This cannot 
be done in the Pythagorean system.  This 
remarkable property of the tempered scale 
was celebrated by J. S. Bach in The Well 
Tempered Clavier wherein all twenty four 
major and minor scales were used in a single 
work. 

� Dynamic Range Perception.  The human 
sense of frequency perception is 
approximately logarithmic.  This allows a 
larger dynamic range of perception.7  The 
tempered scale logarithmically divides each  
octave nicely  into twelve equal logarithmic 
intervals.  

 
 Why does the flexible tempered scale so 
well mimic the structured whole number 
Pythagorean frequency ratios?  The answer, as 
we illustrate, is either a marvelous coincidence 
of nature or clever design of the Creator of 
music.  There is no foundational mathematical or 
physical reason the relationship between 
Pythagorean and tempered western music should 
exist.  But is does.  The rich flexibility of the 
tempered scale and the wonderful and bountiful 
archives of western music are testimony to this 
mysterious relationship. 

Pythagorean Harmony  
Harmony in western music is based on 
harmonics - also called overtones.  According to 
Pythagoras, tones are harmonious when their 
frequencies are related by ratios of small whole 
numbers.  The interval of an octave,  or 
diapason, is characterized by ratios of 1:2, 2:1 

                                                           
7 Human perception of sound intensity is also 
roughly logarithmic.  If were not, the sound of 
100 violins would be perceived as 100 times as 
loud as that of one.  Thankfully this is not the 
case and we can enjoy in our comfortable 
hearing range a violin solo or an orchestra of 
violins.  The increase in volume from 1 to 10 
violins results roughly in the same incremental 
volume increase as 10 to 100 violins.   



and 2:4.  If any frequency is multiplied by 2N 
where N is an integer, the resulting frequency is 
related to the original frequency by N octaves.  
For example, A above middle C is currently, by 
universal agreement, is 440 Hz8.  Then 440 Hz ÷ 
2 = 220 Hz is A below middle C and 440×23 = 
440×8 = 3520 Hz is the frequency of A a total of 
N=3 octaves above A above middle C.  The ratio 
of 2:3 is the perfect fifth or diapente interval 
while 3:4 is the perfect fourth or diatesseron 
interval. 

Numbers that can be expressed as ratio 
of integers are rational numbers. Pythagoras 
claims harmony occurs between notes when the 
ratio of their frequencies are small whole 
numbers.    
 Harmonics result naturally from the 
physics of vibrating strings and air columns.  
The rules for the first few harmonics follow.  
The intervals cited are Pythagorean (or natural)  
since there relations are determined by ratios of 
small numbers.  After each entry is the note 
corresponding to a root of middle C, denoted C4. 
The closest tempered notes are shown in Figure 
Error! Reference source not found. when 
middle C is the root. 

0. 1:1 defines the reference note or root. 
C4. 

1. 2:1, with twice the frequency, is an 
octave above the root. C5. 

2. 3:1 is the perfect fifth (2:1) of the first 
(2:1) harmonic. G5 

3. 4:1 is twice the frequency of the first 
harmonic and is therefore two octaves 
above the root. C6 

4. 5:1 is the major third of the third (4:1) 
harmonic. E6. 

5. 6:1 is twice the frequency of the second 
(3:1) harmonic and is therefore the 
perfect fifth of the third (4:1) harmonic. 
G6. 

6. 7:1 is the minor seventh of the third 
harmonic. Bb6. 

7. 8:1 is three octaves above the root. C7. 
8. 9:1 is the third harmonic of the second 

harmonic.  It is therefore the major 
second of the seventh harmonic. (D7) 

9. 10:1 is an octave above the fourth 
harmonic, and therefore the major third 
of the seventh harmonic. (E7). 

10. 11:1 (F#7) 
11. 12:1 is an octave above the 5th 

harmonic. (G7) 
12. 13:1 (Ab7) 

                                                           
8 Hz = hertz = cycles per second. 

13. 14:1 is an octave above the sixth 
harmonic. (Bb7) 

14. 15:1 is both the second harmonic of 
fourth harmonic and the fourth 
harmonic of the second harmonic. (B7)  

15. 16:1 is an octave above the seventh 
harmonic (C8).  

 

Figure 1: Tempered notes closest to eight 
harmonics when the root is middle C (a.k.a. 
C4). The first four harmonics are numbered.  
Harmonics 2 through 4 (G4,C5,E5,G5) are 
those used in bugle melodies. 

 
 There exist variations of harmonic 
frequencies from the corresponding tempered 
notes.  This variation is shown in Table 1.  The 
fourth column, headed Ratio, contains the 
normalized frequencies of the harmonics 
normalized (divided) by the frequency of the 
root.  The next column, labeled Temper, 
contains the normalized frequency of the 
corresponding tempered note.  The Cents 
column contains the error between the harmonic 
and its tempered equivalent.  The error for the 
lower harmonics is small, as is the error  between 
harmonics whose ratios are products of small 
numbers, e.g. the fifth harmonic where 6 = 3×2 
has an error of only 2 cents and the fifteenth 
harmonic, with ratio 16 = 24, has no error 
whatsoever.  Harmonics with larger prime ratios, 
e.g. the sixth harmonic with ratio 7, tend to have 
larger errors.  Indeed, the 10th harmonic 
corresponding to the prime ratio 11:1, has an 
error of 48.7 cents, less than 2 cents from being 
closer to an F than an F#.  The 16th harmonic, 
with prime ratio 1:17, is so far removed from the 
C4 root it has lost most if not all of its musical 
harmonic relationship.  The 17th harmonic, of the 
other hand, has a ratio of 18 and is exactly an 
octave above the eighth harmonic. 
 Note all tempered notes with the same 
name deviate from the Pythagorean frequency by  
same amount.  All C’s have an error of 0 cents 
and thus have no deviation.  All G’s have a 
deviation of –2 cents, all E’s 13.7 cents, etc. 



 The sixth harmonic deviates over 32 
cents from the corresponding tempered note.  
This difference is enough to be detected by the 
untrained musical ear. 
 

 

 Harmonic  Note  ST's  Ratio  Temper  cents 

Table 1:  The first fifteen harmonics of the
root C4.  The tempered note closest to the
harmonic is shown.  The column ST refers to
the number of  tempered semitones from the
root.  The ratio column lists the integer
multiple of the root frequency.  The
tempered column, to be compared to the
ratio column, is the frequency ratio when the
western tempered scale is used. Cents is the
error between the Ratio and Tempered
frequencies.  One hundred cents is a
semitone. 

 

0 C4 0 1 1.000 0.0
1 C5 12 2 2.000 0.0
2 G5 19 3 2.997 -2.0
3 C6 24 4 4.000 0.0
4 E6 28 5 5.040 13.7
5 G6 31 6 5.993 -2.0
6 Bb6 34 7 7.127 31.2
7 C7 36 8 8.000 0.0
8 D7 38 9 8.980 -3.9
9 E7 40 10 10.079 13.7
10 F#7 42 11 11.314 48.7
11 G7 43 12 11.986 -2.0
12 Ab7 44 13 12.699 -40.5
13 Bb7 46 14 14.254 31.2
14 B7 47 15 15.102 11.7
15 C8 48 16 16.000 0.0

 

 The first four harmonics with the root 
form a natural major chord, e.g. C C G C E.  
Removing the redundant notes leaves C G and E.  
Including the next two harmonics yields a 
seventh chord (C G E Bb) and three more 
harmonics a ninth chord (C G E Bb D).  We can 
continue to an eleventh (C G E Bb D F) and 
thirteenth (C G E Bb D F A) chord.  All of the 
numerical chord names are odd numbers simply 
because even numbers reflect of an octave 
relationship and add no new notes to the chord.  
The 6th harmonic, with ratio seven, is, indeed, the 
new note in the seventh chord (Bb).  Likewise, 
the 8th harmonic with ratio nine, is added to 
obtain the ninth chord.  Continuing further gives 
deviation.  The 10th harmonic (F#) with ratio 
eleven is different from new note in an  eleventh 

chord (F). As noted, though, this harmonic is less 
than two cents from being closer to F than F#.    
Similarly, the thirteenth (A), build by adding a 
major third to the eleventh,  deviates from the 
note closest to eleven times the frequency of the 
root (Ab) which corresponds, instead,  more 
closely to the addition of a minor third. 

Melodies of Harmonics: Bugle 
Tunes9 
Harmonics with ratios of 1:3 through 1:6 are 
used in the melodies played by bugles, including 
Taps played at military funerals and Revelry 
played to wake soldiers in the morning.  The 
simple four note music for Taps is shown in 
Figure 2.  Revelry, played with the same four 
notes, is shown in Figure 3. 

The bugle, when unwrapped, is a simple 
vibrating air column as illustrated in Figure 4.  
The vibrating lips of the bugle player determine 
the vibration mode of the air. The vibration 
modes shown are those used in bugle melodies.  
The bugle therefore sounds true Pythagorean 
harmonics and not tempered note intervals.  The 
mode with three “bumps” at the top of Figure 4 
is the second harmonic and corresponds the 
lowest of the four notes.  The vibration mode 
with six “bumps” is the highest.  

 
Figure 2: Taps is played with four notes.  They 
are the 3rd through 6th harmonics of the bugle’s 
vibrating air column.   

 

Pythagorean and Tempered String 
Vibrations 

 A guitar string vibrates similarly to the 
air column patterns in Figure 4.  We assume 
throughout that, as is the case for a guitar or 
violin, a string has uniform linear mass density 
(i.e. it is not skinny in some places and fat in 
others) and is under a constant tension.  Different 
                                                           
9 The music files of bugle melodies are from 
http://www.computingcorner.com/holidays/vets/t
aps.html wherein much appreciated permission 
for educational use is granted.  

http://www.computingcorner.com/holidays/vets/taps.html
http://www.computingcorner.com/holidays/vets/taps.html


notes are sounded only be changing the effective 
length of the string or, as is the case with 
generation of harmonics, applying initial 
conditions that prompt the string not to move at 
one or more points. 

The vibration modes of a string are 
shown in Figure 5  Lightly touching the middle 
of the string over the twelfth fret bar and 
plucking results in the string vibrating in two 
halves. The sounded tone is an octave higher 
than the string played open.  Vibration in two 
sections continues even after the finger is 
removed from the string.  This is the first 
harmonic of the note sounded by the open string. 

Figure 3: Like Taps, Revelry is played with four 
notes.  They are the 2rd through 5th harmonics of 
the bugle’s vibrating air column.   

 The note sounded in the first harmonic 
is equivalent to the note sounded by a string of 
half the length.  In other words, the first 
harmonic in Figure 6 can be viewed as two 
independent strings vibrating, each string being 
half the length of the open guitar string.  The 
twelfth fret bar divides the string into two equal 
pieces.  If the string is depressed on the twelfth 
fret in a conventional matter, the sounded note, 
after plucking, is the same as the note of the 
string’s first harmonic. 
 
 Placing the finger lightly over the 
seventh fret bar and plucking results in the string 
vibrating in three equal pieces.  (See Figure 5.)  
This is the second harmonic. Besides the bridges 
that mechanically constrain the string from 
vibrating, there are two nodes where the string is 
not moving.  One is over the seventh fret bar.  
While the string is vibrating, this point on the 
string can be lightly touched and the string 

continues to vibrate. The same is true if the 
string is lightly touched over the 19th fret bar.  As 
is illustrated in Figure 5, this is one of two 
places, other than the bridges, where the string 
does not vibrate.  Placing the finger on the 
twelfth fret, on the other hand, interupts the 
vibration of the string and the note ceases to 
sound.   

Figure 4: Vibration modes in an air column for 
the second (top) through fifth (bottom) 
harmonics.    These modes form the four notes for 
all bugle melodies including Taps and Revelry. 

 The note sounded in the second 
harmonic can be viewed as resulting from the 
vibration of three independent strings each with a 
length of one third that of the open string.  
Depressing the nineteenth fret, which leaves one 
third of the length on the business end of the 
string, yields this same note, when plucked, as 
the second harmonic. 
 Continuing,, a finger lightly touching 
the string over the fifth fret bar will, after 
plucking, result in the string vibrating in four 
equal parts.  This mode corresponds to the 
vibration shown second from the top in Figure 4 
and sounds the third harmonic of the open 
string’s root note. Similarly, lightly touching 
above the fourth fret gives the fourth harmonic 
and the third fret gives the fifth.   

Note that, by moving the finger between 
the seventh, fifth, fourth and third fret, the 
sounded notes are those necessary to play the 
bugle tunes in Figures 2 and 3.  Like the 
vibrating air column, these harmonics can be 
sounded by applying the proper initial conditions 
and stimuli.  For the bugle, the stimulus is air 
and the boundary conditions the frequency of the 
bugler’s vibrating lips.  For the string, the 
boundary conditions are imposed through lightly 
touching the string while the stimulus is a simple 
pluck.  Remarkably, these physically different 
systems with different physics display similar 
musical (and physical) properties.   Each obeys 
the wave equation – a partial differential 
equation imposed by fundamental Newtonian 
physics.  The wave equation is predominant in 



physics and is applicable to numerous areas.  
Besides vibrating strings and air columns, the 
wave equation can be derived for phenomena 
ranging from heat transfer to the propagation of 
light rays.  The wave equation is derived in 
Appendix A for the case of a vibrating string. 

Fret Bar Calibration: The 
Tempered Scale from the 
Perspective of the Vibrating String 

 
The location of the mode nodes at fret bars in 
Figure 5 is manifest from the same condition that 
allows natural Pythagorean music to be 
approximated by the tempered scale.  As noted, a 
string in Figure 5 with one third the length of the 
open string, and under the same tension, will 
sound a note equal to the second harmonic.  The 
string is one third the length and sounds three 
times the frequency.  The relation is the same 
with all of the harmonics.  The fourth harmonic 
can be sounded with a string of one fifth the 
length.  The frequency is five times higher.  We 
conclude, then, that for a string under a given 
tension, the string’s length is inversely 
proportional to its frequency.  If f is the 
frequency in Hertz, and l is the length, then 
 

f × l = v   (2) 
 
where, for a given string under constant tension,  
v is the constant of proportionality.10  This 
relation can be derived more forthrightly using 
the mathematics of physics. 

Using Equations 1 and 2, the locations 
of the fret bars can be obtained.  If an open string 
of length l=l0 sounds a frequency of f0, the same 
string, shortened to length l1 by the first fret bar 
as illustrated in Figure 6, should have a 
frequency equal to a semitone above f0.  This 
frequency is  0

12
1 2 ff = .  From Equation (2), 

we know that f0 × l0 = f1 × l1 . Substituting 

0
12

1 2 ff =  and solving gives 

0
12

01 0.9438742/ lll ×==
 

.   

5th

                                                           
10 Indeed, v is the fixed velocity of the wave on 
the string.  If  l  is in feet and f is in Hertz, then v 
has units of feet per second.  The velocity is 

related to the string parameters by ρ
T=v  

where T is the string’s tension (a force) and ρ  is 
the string’s linear mass density (mass per unit 
length).  See Appendix A for more details. 
 

1st

4th

3rd

2nd

Figure 5: Vibrating strings can, similar to 
vibrating air columns, generate harmonics.  On a 
guitar, lightly touching at the 12th fret and 
plucking results in the string vibrating in two 
pieces and sounds the first harmonic of the root 
tone of the open string.  Lightly  touching the 
seventh fret and plucking results in three 
vibrating string sections and the second 
harmonic.  The process can be repeated, as 
shown here, for higher order harmonics.  The 
volume of the tone obtained, however, 
diminishes as the harmonic number increases. 

19th fret 
bar 

 
The length l2 can likewise be 

determined by requiring the sounded frequency 
be a semitone above f1 .  Following the same 

procedure, we find ( )212
1

12
12 2/2/ lll == .  

Continuing this induction, the distance, ln, 
between the bridge and the nth fret bar is 

( )
12

12
2

2

n

nn

−

×== l
l

l          (3) 

 
Here are some interesting tempered lengths that 
lie close to the natural or Pythagorean 
harmonics. 



• The n = twelfth fret bar is at 2/12 ll = = 
half of string’s length.   

• The n = 7th  fret bar, constituting an interval 
of a perfect fifth, is at 

( ) .66667.0
3
20.667422/

712
7 lllll ×=≈×==

 
• The n = 5th  fret bar, constituting an interval 

of a perfect fourth, is at 

( ) .66667.0
3
20.667422/

712
7 lllll ×=≈×==

 
• The n = 19th  fret bar (see Figure 6) roughly 

should leave one third of the string’s length.  

( ) .33333.0
3
10.333712/

1212
19 lllll ×=≈×==

 
 

Figure 6: The length of a string from bridge to
bridge is  l = l0.  The length, ln, from the bridge
to the nth fret bar is  
 

( )nn
12 2/ll = . 

19th fret 
bar 

 l0 

 l1 

 l2 

 l19 

 
Table 2 contains a more complete listing of the 
harmonic lengths of the vibrating string and the 
corresponding tempered scale.  The fret column 
refers to the string length when depressed at the 

nth fret.  The temper column contains the length 
from the nth fret bar to the bridge.  Pythagorean 
lengths, like Pythagorean frequencies,  Since, 
from Equation 2, 

n

n
f
f

l

l 0

0
= , 

we deduce that, if  harmonious Pythagorean 
frequency ratios require expression as the ratio of 
small whole numbers, so must the length of 
strings producing notes of harmony.  Thus, good 
harmony requires 
 

den
num

0
=

l

l n = ratio 

where the numerator, num, and the denominator, 
den, are small whole numbers.  These small 
whole numbers are shown in the columns in 
Figure 6.  The error between the tempered string 
length and the natural Pythagorean string length, 
shown in the column ratio, is shown in Table 2 
in the cents column.  Not included are the major 
and minor second, major seventh, and the tritone.  
Each is dissonant with respect to the root and 
defeats the purpose of tabulating the comparison 
between harmonious intervals.  

Table 2: Tempered guitar fret bar 
spacing versus string length based on 
natural Pythagorean intervals.  The 
prefix “m” denotes “minor”, “M” 
major, and “P” perfect.  

 fret  interval  temper  num  den  ratio  cents

 

0  root 1.000 1 1 1.000 0 
1  m 2nd 0.944         
2  M 2nd 0.891 7 8 0.875 31 

3  m 3rd 0.841 5 6 0.833 16 
4  M 3rd 0.794 4 5 0.800 -14 
5  P 4th 0.749 3 4 0.750 -2 
6  tritone 0.707        

7  P 5th 0.667 2 3 0.667 2 

8  m 6th 0.630 5 8 0.625 14 
9  M  6th 0.595 3 5 0.600 -16 

10  m 7th 0.561 4 7 0.571 -31 

11  M 7th 0.530        

12  octave 0.500 1 2 0.500 0 

 

An inverted interval pair adds to an 
octave.  An example is the minor third and the 
major sixth.   Note, in table 2, the cents error for 
inverted interval pairs adds to zero. 



We could, if desired, continue Table 2 
to include frets above twelve.  Doing so, 
however, is uninteresting.  The entries in the 
temper column will be halved.   Fret 13, for 
example, will contain the entry of half of fret 1, 
equal to 9.944/2 = 4.872.  Fret 14 in the temper 
column will contain half the value of that in fret 
2.  Fret 112 will contain half the value in fret 
100, etc. The num column, on the other hand, 
remains the same for the next octave.  Each entry 
in the den column, on the other hand, is divided 
by 2 for the next octave, 22=4 for the following 
octave, etc.  Thus, for the immediate next octave 
(frets 13 though 24), the entries in the ratio 
column are half of what they in the table entry 
shown.  In the next highest octave (frets 25 
through 36), the entries will be divided by  22=4, 
etc. The result is that the entries in the cents 
column remain the same for every octave.  

Table 3: A table of the ratio of small numbers. 

Den 1 2 3 4 5 6 7 8 9 

Num                   

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

1.00 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11

2.00 1.00 0.67 0.50 0.40 0.33 0.29 0.25 0.22

3.00 1.50 1.00 0.75 0.60 0.50 0.43 0.38 0.33

4.00 2.00 1.33 1.00 0.80 0.67 0.57 0.50 0.44

5.00 2.50 1.67 1.25 1.00 0.83 0.71 0.63 0.56

6.00 3.00 2.00 1.50 1.20 1.00 0.86 0.75 0.67

7.00 3.50 2.33 1.75 1.40 1.17 1.00 0.88 0.78

8.00 4.00 2.67 2.00 1.60 1.33 1.14 1.00 0.89

9.00 4.50 3.00 2.25 1.80 1.50 1.29 1.13 1.00

Tempering Pythagoras 
By example, we have demonstrated western 
music’s tempered scale, based on the awkward 
irrational number,12 , relates closely to the 
Pythagorean harmonies given by the ratios of 
small numbers. Where does this strange number 

2

12 2  come from and why does it mimic lower 
ordered natural harmonics so well?  The number, 
12 2 , cannot be expressed as the ratio of whole 
numbers and is therefore an irrational number.11   

                                                           
11 The Pythagoreans mixed math with religion, 
music and mysticism.  They considered irrational 
numbers blasphemy.  Singh [Simon Singh, 
Fermat's Enigma (Walker & Co., 1997)] tells of 
a Pythagorean  heretic who brazenly – and 

correctly - suggested 2 , like 12 , could not 
be expressed as the ratio of two whole numbers.   
This questioning of his teaching prompted 
Pythagoras to sentence the rebel to death by 
drowning.  

2

 
 

  This begs the question.  Why does the 
tempered scale so closely approximate the 
natural Pythagorean small number ratios.  
Remarkably, there is no mathematical or worldly 
philosophical answer.  The relationship is either 
a remarkably fortuitous accident of nature or 
divine design that allows the Pythagorean system 
of harmony to be characterized by the tempered 
scale.   

The tempered scale arises through 
numerous directions of analysis of  Pythagorean 
harmony.  Examples have been given for the 
case of harmonics and guitar fret calibration.  
Some more directed numerical inspection 
follows. 

A Literal Interpretation of 
Pythagoras’ Lemma 
Let’s look at the Pythagorean claim literally: 
frequencies reducible to ratios of small numbers 
are harmonically pleasing.  For “small numbers”, 
let’s choose the integers one through nine. This 
is shown in Table 3.  The numerator, denoted 
Num, is in the column at the left and the 
denominator, Den, is in the top row.  The ratio 
Num/Den is entered in the table.  According to 
Pythagoras,  all of these ratios should harmonize. 

 

Table 4: The notes corresponding to the ratios in 
Table 3 when the root is C4.. 

 1 2 3 4 5 6 7 8 9 

1 C 4 C 3 F 2 C 2 Ab 1 F 1 D 1 C 1 Bb 0

2 C 5 C 4 F 3 C 3 Ab 2 F 2 D 2 C 2 Bb 1

3 G 5 G 4 C 4 G 3 Eb 3 C 3 A 2 G 2 F 2 

4 C 6 C 5 F 4 C 4 Ab 3 F 3 D 3 C 3 Bb 2

5 E 6 E 5 A 4 E 4 C 3 A 3 F# 3 E 3 D 2 

6 G 6 G 5 C 5 G 4 Eb 4 C 4 A 3 G 3 F 2 

7 Bb 6 Bb 5 Eb 5 Bb 4 F# 4 Eb 4 C 4 Bb 3 Ab 3

8 C 7 C 6 F 5 C 5 Ab 4 F 4 D 4 C 4 Bb 3

9 D 7 D 6 G 5 D 5 Bb 4 G 4 E 4 D 4 C 4 

 
 For purposes of discussion, the 

reference note, or root, will be middle C denoted 

                                                                                



C4.  The first column of ratios in Table 3 are the 
integers 1 though 9.  These are simply the 
harmonics of root.  The first harmonic with a 
ratio 2.00 is one octave above C4 and is 
therefore C5.  The second harmonic, with ratio 
3.00, is G5, the perfect fifth of C5.  The third 
harmonic with a ratio of 4.00 is one octave above 
C5 and is therefore C6.  The fourth harmonic, as 
evidenced by the notes of Taps, is the perfect 
third of C6 and is therefore E6.  The fifth 
harmonic, with ratio 6.00 is a factor of 2 greater 
than 3.00 and is therefore G6 – an octave above 
G5.  The sixth harmonic is Bb6, the seventh 
harmonic, C7 and the eighth, equal to the perfect 
fifth of  the fifth harmonic, is D7.  These notes 
are entered into the ratio matrix in Table 4. 
The entries in the top row of Table 3 can 

likewise be analyzed.  The entries are 1, 
2
1 , 

3
1 , 

4
1 , 

5
1

, and
6
1 .  Rather than being sequential 

integer multiples of the root, the entries are 
sequential integer divisors of the root. These 

notes are subharmonics.  With C4 as the root, the 

note with ratio 
2
1  is clearly an octave lower, or 

C3.  The note with the ratio 
3
1  has C4 as its third 

harmonic.  This note is F2.  C2, an octave below 

C3, has a ratio of 
4
1 .  The ratio 

5
1  is the note 

having C4 as its fifth harmonic.  This is Ab1.  

The last entry, with a value 
6
1 , is an octave 

below 
3
1  and is therefore is F1. 

 

Table 5 

Note ratio ratio cents 

 

Ab 3 (4,5) (7,9) -49

A 3 (5,6) (6,7) 49

Bb 4 (7,4) (9,5) 49

F# 3 (5,7) (7,10) -35

F# 4 (7,5) (10,7) 35

Bb 3 (7,8) (8,9) 27

D 4 (9,8) (10,9) -22

 
Each of the columns in Figure 4 can now be 

filled.  For purposes of discussion, refer to the 
nth row and the mth column in Tables 3 and 4 as 
(n,m) The intervals between two columns in the 
same row are preserved when the row is 
changed.  In row one of Table 4, for example, the 
interval between (1,1) and (1,6) is a perfect 
fourth minus three octaves, i.e. C4 to F1.  For 
any row, the entries in column 1 and 6 must be 

this same interval.  Since the entry in row (7,1) 
has been determined to be Bb6, we remove three 
octaves and add a perfect fourth as we did in row 
1, and the entry in (7,6) is Eb4.  We proceed thus 
to fill in the entire matrix in Table 4. 

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85
k

Figure 7 

k

There are problems with the natural 
Pythagorean ratios in Table 4 when the integers 
become intermediately large.  The entries in 
Table 4 for (5,6) and (6,7) are both A3.  The 
entry in Table 3 for (5,6) is 0.83 and the entry for 
(6,7) is 0.86.  Different frequencies, separated by 
49 cents or almost a half semitone, are assigned 
the same note: A3.  Other inconsistencies are 
noted in Table 5.  These entries include all 
ambiguities when ratios are taken between the 



numbers one and ten.  (Tables 3 and 4 are for 
one through nine). 

 The notes in Table 4 can be numbered 
starting at a value of  0 for the note C0.  The 
number of semitones between C0 and is k.  Each 
of the notes in Table 4  has a value of k.  The 
variable k is then associated with the 
corresponding ratio value in Table 3.  The 
sorting of these ratios in accordance to k is 
shown in Table C in Appendix C.   Plotting the 
natural ratio and the tempered values results in 
the plot in Figure 7.  The plot, by design, is an 
exponential curve.  A logarithmic plot of the 
ratios, shown in Figure 8, nearly forms a line. 
Thus, the musical intervals are linear when 
perceived by a logarithmic sensor such as the 
human ear. 

 

0.010

0.100

1.000

10.000

  Figure 8 

 The straight line in Figure 8 may be 
initially surprising.  The ratio of small numbers 
when matched to an indexed note form a 
remarkably straight line when plotted  
logarithmically.   From another perspective, the 
result is not surprising at all.  The natural ratios 
were matched to notes with the closest tempered 
values.  The natural ratios, then, were dispersed 
in a fashion that forced their relationship in 
Figure 8 to be nearly linear. 
 The error analysis of the natural ratio to 
tempered value deviation is of greater 
significance.  If matches between ratios and 
tempered intervals were random, we would 
expect errors to be uniformly distributed between 
–50 cents and 50 cents.  This probability model 
has a standard deviation of 

9.28
12

100
==σ cents.  (3) 

The sample variance, obtained by evaluating the 
square root of average error squared, is 
 

5.161

1

2 == ∑
=

N

k
kS c

N
σ cents 

where ck is the error, in cents, read from the 
N=47 error entries in Table C.  The result is 
significantly smaller than would be expected by 
uniformly random error. 
 Harmonious tempered intervals include 
major and minor thirds and sixths, perfect 
fourths and fifths, and octaves.  If only the 30 
entries corresponding to these harmonious 
intervals in Table C are used, the error standard 
deviation slips even lower to 1.12=Sσ .   

Our experiment reveals, as expected, 
harmonious Pythagorean intervals obtained using 
a literal interpretation of Pythagoras’ conjecture 
concerning ratios of small whole numbers yields 
notes significantly closer to tempered tones than 
random occurrence would otherwise allow. 

Harmonics Expansions Produce 
Major Chords and the Major Scale 
A more structured illustration of the tempered 
scale’s ability to provide Pythagorean harmony 
comes from derivation of the tones in a tempered 
scale.  We begin with the I, IV and V chords of 
the major scale.  If C is the root, then I is a C 
major chord, IV is an F chord and V a G.  Note 
G is the closest non-octave harmonic to C.  In a 
dual sense, F has, as its closest non-octave 
harmonic, C.  As before, all frequencies are 
normalized to the frequency of the root, C.  The 
note C therefore has a normalized frequency of 
one. 
 In the construction of the I, IV, V 
chords, any note’s frequency can be multiplied 
by 2M without changing the note name as long as 
M is an integer.  For any note, a value of M can 
always be found to place the notes normalized 
frequency between 1 and 2.  Both 1 and 2 
correspond to C’s.  Placing a note’s normalized 
frequency between 1 and 2 is therefore simply 
constraining the note to lie in a specified octave. 
 The C major chord is formed from the 
first five harmonics of C.  Removing the octave 
harmonics (the first and third), the notes of the C 
chord are C, G, and E with relative frequencies 
1, 3, and 5.  The frequency 3 for can be reduced 
to the desired octave by dividing by 2 to form the 
normalized frequency 3/2.  Similarly, the 
frequency 5 can be divided by 4 = 22  to form the 
normalized frequency 5/4.  When reduced to 
octave between 1 and 2, The notes C, G and E 
have normalized frequencies of 1, 3/2, and 5/4. 



 A similar analysis is applicable to the V 
(G) chord.  Beginning with a chord root of 3, the 
notes in the G chord, corresponding to the 
second and fourth harmonics, are 9 and 15.  
Thus, the G, D, and B notes of the G chord have 
respective frequencies 3, 9 and 15.  By choosing 
an appropriate integer, M, each can be placed in 
the interval of 1 to 2.  The 3, as before, is divided 
by 2 corresponding to M = -1.  Using M=-3, the 
frequency of 9 becomes 9/8.  Lastly, B becomes 
15/8.  The frequencies of the V chord in the 
frequency interval of 1 to 2 are therefore 3/2, 9/8 
and 15/8. 
 Lastly, consider the IV chord.  If we 
construe F as being the note to which C is the 
second harmonic, then frequency of the F note is 
1/3.  The notes for the F major chord, F, A, and 
C, follow as 1/3, 3/3 and 5/3.  Each of these can 
be placed the interval 1 to 2.  The result is 4/3, 1, 
and 5/3.  
  The results of our analysis are shown in 
Table 6.  The top table has the harmonic 
construction of the I, IV, and V chords using 
harmonics followed by reducing the normalized 
frequencies to the octave between 1 and 2.  The 
middle table contains the corresponding notes 
when the root note is a C.  The last table is a 
decimal equivalent of the ratio in the top table. 

Table 6: Constructing the 
Pythagorean 8 note major scale.  

ratios IV I  V 
  F C G 

Tonic  4/3 1  3/2 
P 5th 1  3/2  9/8 
M 3rd  5/3  5/4  15/8 

        
notes IV I  V 

  F C G 
Tonic F C G 
P 5th C G D 
M 3rd A E B 

        
decimal IV I  V 

  F C G 
Tonic 1.3333 1.0000 1.5000 
P 5th 1.0000 1.5000 1.1250 
M 3rd 1.6667 1.2500 1.8750 

 
  
 

 note k ratio tempered cents 
C 0 1.0000 1.0000 0 
C#  1   1.0595  
D 2 1.1250 1.1225 4 
Eb 3   1.1892  
E  4 1.2500 1.2599 -14 
F 5 1.3333 1.3348 -2 
F# 6  1.4142  
G 7 1.5000 1.4983 2 
Ab 8  1.5874  
A  9 1.6667 1.6818 -16 
Bb 10  1.7818  
B  11 1.8750 1.8877 -12 
C 12 2.0000 2.0000 0 

 Table 7: Comparison of the natural 
Pythagorean major scale with the 
tempered major scale. 
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Figure 9: A logarithmic plot of the 
Pythagorean ratios in Table 7.  The line 
is nearly straight illustrating the near 
equivalence of the harmonically derviced 
major scale with tempered intervals.  If 
the line were exactly straight, each mark 
would lie on a horizontal line. (Missing 
entries in Table 7 were replaced by the 
geometric mean of ajdacent entries. The 
geometric mean of numbers p and q is 

pq . 
 

As before, we assign an index of k=0 to C, k=1 
to C#, k=2 to D, etc.  Arranging the entries in 
Table in ascending values of k gives the results 
shown in Table 7.  A logarithmic plot of the ratio 
values, shown in Figure 9, results in a 
remarkably straight line.  Using the entries in 
Table 7, the standard deviation of the natural 8 
note major scale from the tempered scale is a 



miniscule 8.6 cents.12  The error range 
(maximum error minus minimum error) in Table 
7 is 20 cents compared to 100 cents expected for 
randomly chosen notes on the interval from 1 to 
2. 
 ratios F C G 

root  4/3 1  3/2 
3rd sub  16/9  4/3 1 
5th sub 16/15  8/5  6/5 

       
noted Bbm Fm Cm 
root F C G 

3rd sub Bb F C 
5th sub Db Ab Eb 

       
decimal Bbm Fm Cm 

root 1.3333 1.0000 1.5000 
3rd sub 1.7778 1.3333 1.0000 
5th sub 1.0667 1.6000 1.2000 

 
Table 7: Chord expansion using 
subharmonics.  The result is the notes in the 
key of F minor.  The chords are I, IV and V 
chords of the key of (natural) F minor. 

  
 

Consider, then, performing an operation 
similar to that in Table 6, except with 
subharmonics.  The three notes, F, C, and G, will 
be expanded into their first four subharmonics.  
For each subharmonic, the note is moved into the 
octave with normalized frequencies between 1 
and 2.  The result is shown in Table 7.  
Interestingly, the notes generated are those in the 
natural minor key of Fm.  The I, IV and V 
chords of the key are generated by the 
subharmonics. 

Combining the Harmonic and 
Subharmonic Expansions 
Approximates the Tempered 
Chromatic Scale 
Note that nearly all of the missing note in the 
harmonic expansion in Tables 6 and 7 are 
present in subharmonic expansion in Table 8.  
The only missing note in the union of the Tables 
is the tritone, F#.   A logarithmic plot of these 
entries is shown in Figure 10.  The standard 
deviation of the fit is a mere 12.1 cents. 

                                                           
12 Recall, from Equation 3, the standard 
deviation of randomly placed notes is a 
significantly larger 28.9 cents. 

Subharmonic Expansions 
Produce Minor Scales and Chords 
The expansion in Table 6 used harmonics.  A 
similar expansion can be performed using 
subharmonics.   The nth subharmonic of a note 
has a frequency of 1/nth the root.  Rather than 
being sequential integer multiples of the root as 
is the case with harmonic, subharmonics are 
sequential integer divisors of the root.  

note k ratio tempered cents 
C 0 1.0000 1.0000 0 
C#  1 1.0667 1.0595 12 
D 2 1.1250 1.1225 4 
Eb 3 1.2000 1.1892 16 
E  4 1.2500 1.2599 -14 
F 5 1.3333 1.3348 -2 
F# 6  x 1.4142 x  
G 7 1.5000 1.4983 2 
Ab 8 1.6000 1.5874 14 
A  9 1.6667 1.6818 -16 
Bb 10 1.7778 1.7818 -4 
B  11 1.8750 1.8877 -12 
C 12 2.0000 2.0000 0 

 Table 8:  Eleven of the 12 tones of the 
tempered chromatic scale result naturally 
from harmonic and subharmonic expansion 
of the root, perfect fifth and perfect fourth. 
These entries are a combination of the 
entries in Table 5 (the harmonic expansion) 
and Table 7 (the subharmonic expansion). 
The natural Pythagorian results, as 
witnessed by the low cents error, are 
remarkably close to the corresponding 
tempered frequencies.  

 
Wherein harmonics build major chords, 

subharmonics build minor chords.  With C4 as 

the root, the note with ratio 
2
1

 is clearly an 

octave lower, or C3.  The note with the ratio 
3
1

 

has C4 as its third harmonic.  This note is F2.  

C2, an octave below C3, has a ratio of
4
1

.  The 

ratio 
5
1

 is the note having C4 as its fifth 

harmonic.  This is Ab1.  The next subharmonic, 

with a value 
6
1

, is an octave below 
3
1

 and is 

therefore is F1.  The notes generated by this 



sequence are C, F, and Ab.  These notes 
constitute an F minor (written Fm) chord.  
Subharmonics, indeed, generate minor chords. 

Final Remarks 
A review of the discussion reveals, surprisingly, 
that no reason is given for the wonderfully close 
relationships of the natural harmonies of 
Pythagoras and those available from the 
tempered scale.  No answer is given because 
none seemingly exists.  Reasoning of the type 
given empirically establishes the relationship.  
The “why”, however, remains mathematically 
and physically unanswered. 
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Figure 10: A logarithmic plot of 
chromatic intervals in Table 8 as 
predicted by harmonic and 
subharmonic expansions within an 
octave.  Ideally, the plot should be a 
line with every tick exactly intersecting 
the horizontal line.  Although not 
perfect, the naturally generated notes 
are nearly identical to their tempered 
equivalents.  (The tritone was not 
generated in the harmonic and 
subharmonic expansions.  The 
geometric mean was used to 
interpolate.) 

 

 

Appendix A: The Wave Equation 
and its Solution 
 
The wave equation is manifest in analysis of 
physical phenomena that display wave like 
properties.  This includes electromagnetic waves, 
heat waves, and acoustic waves.  We consider 
the case of the simple vibrating string. 

Derivation 
A string under horizontal tension T is subjected 
to a small vertical displacement, y = y(x,t), that is 
a function of time, t, and location, x.  As 
illustrated in  Figure A1, attention is focused on 
an incremental piece of the string from x to 
x+∆x.  Under the small displacement assumption,  
there is no movement of the string horizontally 
(i.e. in the x direction), and the horizontal forces 
must sum to zero. 

θ 1 

x   x+∆x 
T1 

x
 y

θ 2 

T2 

Figure A1 

 
T = T1 cos θ 1 = T2 cos θ2. 

 
Let the linear mass density (i.e. mass per unit 
length) of the string be ρ.  The mass of the 
incremental piece of string is then ρ∆x.  The total 
vertical force acting on the string is T2 cos θ2 - T1 
cos θ 1.  Using Newton’s second law13, we have 

2

2

1122 sinsin
t

yxTT
∂

∂
∆=− ρθθ  

Dividing by the x force equation gives 
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But 

                                                           
13 Often written F = ma or force equals mass 
times acceleration. 
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Taking the limit as ∆x→0 and applying the 
definition of the derivative, we arrive at the wave 
equation. 
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where v2 = T / ρ is the velocity of the wave. 
 

Solution 
For a vibrating string fixed at x=0 and x=L, there 
are the boundary conditions 
 

0),(),0( == tLyty  (A2) 
A solution satisfying the boundary conditions 
and the wave equation in (A1) is 
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(A3) 
 

where the Am coefficients are to determined.  
This equation can be straightforwardly shown, 
by direct substitution, to satisfy both (A1) and 
(A2). 
 The coefficients, Am , are determined by 
the initial displacement of the string 

)()0,( xfxy =  
where is any function satisfying the 
boundary conditions,  From 
A3,  

)(xf
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This expression is recognized as a Fourier series.  
The coefficients can be determined by 
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 The Mth harmonic in (A3) is m+1 

which, from the 







L
mvtπcos  term in (A3), 

vibrates at a frequency of  

L
mvf m 2

= . 

The root frequency is 
L
vff

21 == so  

.mff m =  

 When m is fixed, the 







L
mxπsin term in 

(A3) has m “humps” on the interval Lx ≤≤0 .  
Thus, with reference to Figure 5, the M=1st 
harmonic has m=2 humps.  The 2nd harmonic has 
m=3 humps, etc.  The length of a hump is 

./ mLm =l   Thus, as advertised in (3), 
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Appendix B: Computing the 
Semitones or Cents  Interval 
Separating Two Frequencies 
 
The number of semitones, n, a frequency  fA is 
above a reference frequency fB , is 
 









=

A

B
f
f

n 12 2log           (B1) 

where )(log12 2 ⋅ denotes a logarithm using 

12 2 as a base.  If fA < fB  , the value of n will be 
negative indicating the number of semitones fA is 
below fB . 

This formula is equivalent to the more 
calculator friendly relationship. 
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where the log can be taken with any base (e.g. 10 
or e). 
 To illustrate, the frequency ratio of 3 to 
2 is the natural Pythagorean perfect fifth.  
Substituting gives 

( )2log
2
3log12 








=n =7.01955. 



The tempered perfect fifth is n = seven semitones 
above the root, so the near equivalence of the 
natural Pythagorean and the tempered interval is 
again established.  
 There are 100 cents in a semitone and 
1200 cents in an octave.  The number of cents, c, 
a frequency  fA is above a reference frequency fB  
is 
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
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



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A

B
f
f

c 1200 2
log           (B1) 

where )(log1200 2
⋅ denotes a logarithm using 

1200 2  = the twelve hundredth root of two = 
1.0005777895066, as its base.  A more 
computational friendly formula is 

( )2log
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where, as before, the log is any base. 
 For a given number of semitone 
intervals, n, the number of cents is  
 

c =100 n. 
 
 

 

 

 

 



Appendix C: Table C

 
 
 
 

 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note # ratio temper cents 

C 0 0 0.063 0.063 0 

C#  1   0.066   

D 2   0.070   

Eb 3   0.074   

E  4   0.079   

F 5   0.083   

F# 6   0.088   

G 7   0.094   

Ab 8   0.099   

A  9   0.105   

Bb 10 0.111 0.111 4 

B  11   0.118   

C 1 12 0.125 0.125 0 

C#  13   0.132   
D 14 0.143 0.140 -31 
Eb 15   0.149   
E  16   0.157   
F 17 0.167 0.167 2 

F# 18   0.177   

G 19   0.187   

Ab 20 0.200 0.198 -14 
A  21   0.210   
Bb 22 0.222 0.223 4 
B  23   0.236   

C 2 24 0.250 0.250 0 
C#  25   0.265   
D 26 0.286 0.281 -31 
Eb 27   0.297   
E  28   0.315   
F 29 0.333 0.334 2 

F# 30   0.354   
G 31 0.375 0.375 -2 
Ab 32 0.400 0.397 -14 
A  33 0.429 0.420 -33 
Bb 34 0.444 0.445 4 
B  35   0.472   

C 3 36 0.500 0.500 0 

C#  37   0.530   

D 38 0.571 0.561 -31 

Eb 39   0.595   

E  40 0.625 0.630 14 

F 41 0.667 0.667 2 

F# 42 0.714 0.707 -17 

G 43 0.750 0.749 -2 

Ab 44 0.800 0.794 -14 

A  45 0.833 0.841 16 

Bb 46 0.875 0.891 31 

B  47   0.944   

C 4 48 1.000 1.000 0 

C#  49   1.059   

D 50 1.143 1.122 -31 

Eb 51 1.200 1.189 -16 

E  52 1.250 1.260 14 

F 53 1.333 1.335 2 

F# 54 1.400 1.414 17 

G 55 1.500 1.498 -2 

Ab 56 1.600 1.587 -14 

A  1.667 1.682 16 

Bb 58 1.750 1.782 31 

B  59   1.888   

C 5 60 2.000 2.000 0 

C#  61   2.119   

D 62 2.250 2.245 -4 

Eb 63 2.333 2.378 33 

E  64 2.500 2.520 14 

F 65 2.667 2.670 2 

F# 66   2.828   

G 67 3.000 2.997 -2 

Ab 68   3.175   

A  69   3.364   

Bb 70 3.500 3.564 31 

B  71   3.775   

C 6 72 4.000 4.000 0 

C#  73   4.238   

D 74 4.500 4.490 -4 

Eb 75   4.757   

E  76   5.040   

F 77   5.339   

F# 78   5.657   

G 79 6.000 5.993 -2 

Ab 80   6.350   

A  81   6.727   

Bb 82 7.000 7.127 31 

B  83   7.551   

C 7 84 8.000 8.000 0 

C#  85   8.476   

D 86 9.000 8.980 -4 

Eb 87   9.514   

E  88   10.079   

F 89   10.679   

F# 90   11.314   

G 91   11.986   

Ab 92   12.699   

A  93   13.454   

Bb 94   14.254   

B  95   15.102   
C  
8 96 16.000 16.000 0 
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